Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder.

نویسندگان

  • Tetsuo Kondo
  • Wakako Kasai
چکیده

We investigated the autonomous bottom-up fabrication of three-dimensional honeycomb cellulose structures, using Gluconacetobacter xylinus as a bacterial nanoengine, on cellulose honeycomb templates prepared by casting water-in-oil emulsions on glass substrates (Kasai and Kondo, Macromol. Biosci., 4, 17-21, 2004). The template film had a unique molecular orientation state along the honeycomb frames, but was non-crystalline. When G. xylinus, used as a nanofiber-producing bacterium, was incubated on the honeycomb scaffold in a culture medium, it secreted cellulose nanofibers only on the upper surface of the honeycomb frame. The movement was regulated by a selective interaction between the synthesized nanofiber and the surface of the honeycomb frames of the template. The relationship between directed deposition of synthesized nanofibers and ordered fabrication from the nano- to the micro-scale could provide a novel bottom-up methodology, using bacteria, for the design of three-dimensional honeycomb structures as functional materials with nano/micro hierarchical structures, with low energy consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From semiconductor nanocrystals to artificial solids with dimensionality below two.

Two-dimensional films of semiconductors can be patterned into super-lattices with nanoscale periodicity, using top-down (lithography) or bottom-up approaches. In particular, square and honeycomb lattices of semiconductor nanocrystals have been recently synthesized using oriented attachment. We have performed atomistic tight-binding calculations of the conduction bands of super-lattices of CdSe....

متن کامل

Three dimensional single-walled carbon nanotubes.

We report a simple fabrication method of creating a three-dimensional single-walled carbon nanotube (CNT) architecture in which suspended CNTs are aligned parallel to each other along the conventionally unused third dimension at lithographically defined locations. Combining top-down lithography with the bottom-up block copolymer self-assembly technique and utilizing the excellent film forming c...

متن کامل

Two-dimensional transition metal honeycomb realized: Hf on Ir(111).

Two-dimensional (2D) honeycomb systems made of elements with d electrons are rare. Here, we report the fabrication of a transition metal (TM) 2D layer, namely, hafnium crystalline layers on Ir(111). Experimental characterization reveals that the Hf layer has its own honeycomb lattice, morphologically identical to graphene. First-principles calculations provide evidence for directional bonding b...

متن کامل

3DNA: A Tool for DNA Sculpting

DNA self−assembly is a robust and programmable approach for building structures at nanoscale. Researchers around the world have proposed and implemented different techniques to build two dimensional and three dimensional nano structures. One such technique involves the implementation of DNA Bricks [1], proposed by Ke et al., 2012 to create complex three−dimensional (3D) structures. Modeling the...

متن کامل

Non-additive simple potentials for pre-programmed self-assembly.

A major goal in nanoscience and nanotechnology is the self-assembly of any desired complex structure with a system of particles interacting through simple potentials. To achieve this objective, intense experimental and theoretical efforts are currently concentrated in the development of the so-called "patchy" particles. Here we follow a completely different approach and introduce a very accessi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioscience and bioengineering

دوره 118 4  شماره 

صفحات  -

تاریخ انتشار 2014